
Date

Tools for

Reproducibility

&

Collaborative Information Management

Aurélie Névéol, LIMSI-CNRS

Outline

• Challenges
• Version management
• Synchronous editing
• … Beware of partial/relative information

• Solutions
• Metadata
• Cloud and collaborative editing
• Versioning file systems
• Version control systems

Tracking the Whole Information

Information integrity:
– Information can be distributed over multiple

document sources
• Reference to other documents

– « see attached », .bib file in a latex document
– library dependancies in code

• Use of document or other IDs in corpus collections
– Separate corpus file and gold standard key
(Database management systems, e.g. EMS, Workbench)

 Need to preserve integrity in updates
 Need to question integrity over time

Metadata

Source: http://www.phdcomics.com/comics.php?f=1323

Common approaches to data management…
(from PhD Comics: A Story Told in File Names, 28.5.2010)

http://www.phdcomics.com/comics.php?f=1323

Metadata management

Simple work practices
– File and document editing policies

With advantages
– Quick and easy, no learning curve

… and drawbacks
– Metadata piles up over time and user input
– Version control is hazardous
– Stability over time is questionable

Versioning file systems

A versioning file system is any computer file
system which allows a computer file to exist
in several versions at the same time

– Sample tool: RCS
– Different from backup systems

https://www.wikipedia.org/

Versioning file systems

Advantages
– Easy and transparent to the user
– Changes are dated and old versions available

Drawbacks
– Some training required to use the tool

Cloud, collaborative web

A series of tools
– Doodle, Dropbox, Framapads, GoogleDocs, Skype, etc.

With advantages
– Ubiquitous access (from multiple places and devices)
– Multiple users can edit, merge seamless

… and drawbacks
– Connexion required
– Key aspects are provider dependent

• Security: data is physically stored by a provider
• Privacy: who has access to the data?
• Stability over time

Version control systems

A version control system is a software tool that
manages changes to documents, computer
programs, large web sites, and other collections of
information.

– Changes are identified by a number or letter code.
– Each revision is associated with a timestamp and the

person making the change.
– Revisions can be compared, restored, and with some

types of files, merged.
– Sample tools: sccs, cvs, rcs, svn, git

https://www.wikipedia.org/

Version control systems

• Advantages
• Ubiquitous access (from multiple places and

devices)
• Multiple users can edit via local/distant copies
• Does not require a connexion at all times
• Key aspects user dependent: security, privacy,

stability
• Drawbacks

• Technical complexity: need a system
administrator

• Github ~cloud
• Merge – dealing with concurrent editing

sometimes tricky

In practice, what to use when?

• By yourself - rush, small scale need):
metadata

• By yourself - all needs: RCS, GIT, SVN
• Multiple users - low privacy or security

requirements: cloud
• Multiple users - all needs: GIT/SVN

• GIT/SVN all the way…
• More details now
• Pointers to tools & how to install

A Brief Introduction
to Version Control

Created by Linus Torvalds, in 2005

git (noun) : [british informal] An unpleasant
or contemptible person

http://www.moxie.io/images/git-operations.png

Download Git

https://git-scm.com/download

Available for all major platforms
OS X, Windows, Linux

https://git-scm.com/download

Git Graphical User Interfaces

https://git-scm.com/download/guis

https://git-scm.com/download

Git organises snapshots for you

https://kevinchen.co/assets/blog/git-for-hackathons/git-for-hackathons-slides.pdf

Snapshots of the same file over time

How does it work?

git command options

(or equivalent button clicking
in your favorite GUI)

Repository / « Repo »

A folder where Git is tracking changes

Make a new repository

cd my_projcet

git init

commit

• Create a snapshot of your repository
• Commit the changes you have made

git status (which files changed?)

git diff (which lines changed?)

git add my_report.tex (I want this file in my next commit)

git add pic.jpg papers.bib (these files too!)

git commit (OK, save a snapshot of what I just added)

git log (Show me the commit history)

Steps to commit

Commit message should have

a concise summary.

Put it on the first line. 70 characters or less.

Commit message should have

a detailled explanation.

Think lab notebook. Wrap your text at 70 characters

Informative message

Updated article classification features

The function compute_features now produces additional features related

to token characteristics and external clusters.

< 70 characters

Beware of commit message drifting

https://m.xkcd.com/1296/

A History of your commits

60d1ef3 4f6b996 2c538a0

SHA-1

identification key

(hash key)

You messed something up and you
want to go back

git checkout – my_file

Go back to my_file version per most recent commit

git checkout 60d1ef3

Go back to the commit labeled as 60d1ef3
(and then you can branch out from there – coming up)

You broke something and you want to
change history

git reset --hard 60d1ef3

Revert everything to the commit labelled 60d1ef3

git reset --hard

Revert everything to the most recent commit

What if you wanted that code but

not at that moment?

Branching

Track separate versions of your code

git branch (list the branches of the repo)

git branch my_branch (make a branch called my_branch)

git checkout my_branch (switch to my_branch)

Now you can commit changes to that branch.

Making a branch

60d1ef3 4f6b996 2c538a0 a31a5cb 6a8cbr6

48fa64c 1a3c1b3

master

my_branch

Take Home Messages

Git helps you

organize snapshots

of your projects

These snapshots are called

commits

If you mess up,
you can always go back
as long as there’s been a commit.

Branches let you
try out new ideas
without losing access to the
version that works.

90 % of the time : status / log /

commit / push / pull

8 % : checkout / merge

2 % : other commands

gitimmersion.com An interactive tutorial

book.git-scm.com A detailed text book on Git

think-like-a-git.net Advance use of Git

nvie.com/posts/a-successful-git-branching-model/ on using branches

Further documentation

http://gitimmersion.com/
http://book.git-scm.com/
http://think-like-a-git.net/
http://nvie.com/posts/a-successful-git-branching-model/

Acknowledgements

• Kevin Chen (Columbia University)
• Nicolas Grenier, Thomas Lavergne (LIMSI-CNRS)
• Patrick Paroubek (LIMSI-CNRS)
• Pierre Zweigenbaum (LIMSI-CNRS)

4

4

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Methods in Research on Research

www.miror-ejd.eu @MirorProject

A presentation delivered at the

first MiRoR training event

October 19-21, 2016

Ghent, Belgium

This project has received funding from the EU Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie

Grant Agreement #676207

