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Causal effect

• We are interested in determining the effect of some
"treatment" A on the outcome Y

• "Treatment" = not only a drug, but any exposure

• Effect is intended as compared to some control condition

• This is the aim of RCTs!

• But RCTs are not always feasible
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Causal inference in observational studies

• Usually regarded as not providing unbiased estimates of
the causal effect

• Because of confounding, as you have see previously

• Confounding:

− Y (a) likely to depends on L, and A as well

− So {Y (1),Y (0)} is no more independent of A

− It is easy to estimate E{Y (a)|A = a,L} but not E{Y (a)}

• Some solutions exist under various assumptions regarding
the distribution of (A,L)
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Usual analysis options

• Stratification and matching

• Regression analysis (adjustment)

• Propensity scores

• Some other methods (IV, . . . )

Raphaël Porcher (UPD)

Adjustment for confounding 4/36



Introduction Limits of classical methods Propensity scores References

Balance

• Distribution of confounders similar in treated and untreated
patients

• Can be assessed by looking at the distribution of
confounders in both groups

• Imbalance can cause confounding
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Example of confounding: Simpson’s paradox

• NRS comparing treatments to remove kidney stones1

• Compare open surgery (A) vs percutaneous nephrolithotomy (B)

Population A B Difference (95% CI)
Overall, N 350 350

Success 273 (78%) 289 (83%) −5% (−10 to +1)
Stones < 2 cm, N 87 270

Success 81 (93%) 234 (87%) +6% (−2 to +12)
Stones ≥ 2 cm, N 263 80

Success 192 (73%) 55 (69%) +4% (−6 to +16)

1Charig et al. BMJ 1986;292: 879–82; Julious & Mullee BMJ
1994;309:1480
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Noncollapsibility (6= confounding)

• Take a RCT of A vs B stratified on L

Size < 2 cm (L = 1) Size ≥ 2 cm (L = 0) All (marginal)
A = 1 A = 0 A = 1 A = 0 A = 1 A = 0

Y = 1, N 80 60 40 20 120 80
Y = 0, N 20 40 60 80 80 120
Success rate 80% 60% 40% 20% 60% 40%
ARD 20% 20% 20%
RR 1.33 2.00 1.50
OR 2.67 2.67 2.25
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Overlap

• Overlap of the distributions (overlapping support)

• Lack of overlap implies extrapolating results

• Different from balance
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Example of balance and overlap: ALARM study

Serum creatinine (mg/dL)
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Stratification

• Group together patients with same values of L

• Estimate the treatment effect in each subgroup

• Pool the results

• L is a vector of covariates→ many subgroups

• Very difficult to use when there are many confounders
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Regression model (for the outcome)

• Usually a linear regression model

E(Y |A,L) = β0 + β1A + β2L

• β̂1 is the estimate of the treatment effect
• What is behind?
− Constant treatment effect, normally distributed residual

errors, common slope on L
− Estimates the conditional treatment effect
− May be subject to curse of dimensionality (even more with

nonlinear effects, interactions)

• Some assumptions may not hold, or may be unverifiable
(in particular if the observed distributions of L do not
overlap (extrapolation)
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Effect of extrapolation (1)2

• Take whole data (left)
• Fit linear and quadratic models→ different results

2Ho et al. Political Analysis 2007
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Effect of extrapolation (2)

• Match treated and control patients with similar L (right)
• Gray units are discarded
• Similar treatement effect estimates by both models
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Propensity score

• Probability of receiving the treatment A given the
covariates L

π(L) = Pr(A|L)
• Key properties of the PS
− Balancing score
− Under unconfoundedness, the difference between groups

at a given value of π(L) is an unbiased estimate of
treatment effect at that value

− Using sample estimates of π(L) can produce sample
balance on L

− Heuristically, two individuals with the same PS only differ by
the treatment they received
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Uncounfoundedness

• Potential outcomes {Y (0),Y (1)} do not depend on the
treatment actually received given the covariates L

• 0 < Pr(A = 1|L) < 1 (positivity)

• Also termed ’ignorability’
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Assumptions

• Impossible to know that no confounder was missed

• Rely on knowledge, draw DAGs

• Positivity can be looked at

• Balance has to be checked to verify that the PS model was
successful
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Key steps in building a PS model

1. Define the intervention and target population

2. Identify appropriate data

3. Select appropriate covariates (confounders)

4. Estimate the propensity score

5. Apply the PS ("use" it)

6. Assess balance (PS successfulness)

7. Analyze the outcome
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Data sources

• Ad-hoc studies (perferably prospective)

⊕ Collect appropriate data (confounders, outcomes)

	 Need to collect data (time consuming, expensive . . . )

• Large (huge) administrative databases

⊕ Data readily available for large no. of patients

	 Representativeness, potentially missing important
confounders

• Grouping of administrative databases

⊕ Even more data, better representation

	 Clustered missing confounders
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Selection of covariates for the PS model

• "True" confounders (related to A and Y ) should be included

• Better include more than less variables, if possible (sample
size)

• For smaller sample size, concentrate on variables strongly
related to the outcome rather than treatment

• Think that too many variables may lead to narrower
common support (and information loss)

• Avoid colliders and IVs (DAGs, again)
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PS estimation

• Any regression model for binary variable

• Logistic regression most commonly used

• Other options

− CART
− More recent: boosted CART, random forests

• The PS model itself is of little interest: the predictions π(Li)
are just needed

− The predictive ability of the model is not central
− Neither are overfitting or collinearity
− But should result in successfully balanced samples
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"Conditioning" on the propensity score

• "Conditioning" can be intended different ways

• Matching

• Weighting

• Some other approaches have also been considered
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Assessing balance

• Properties of the PS rely on balancing: the succesfulness
of the PS model to achieve balance has to be assessed

• Not a matter of standard diagnostics for the PS model itself

• Somewhat beyond the scope of statistical testing between
groups

• Show summary statistics for groups before/after
matching/weighting

• As well as standardized differences (mean diff./pooled SD)
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Matching

• Match m controls to n treated

• (m,n) are generally fixed (often with m = 1 and n = 1)

• Full matching: all controls and treated with "close" PS are
matched together

• Controls (but also treated patients) on the "edge" of the PS
distribution likely not to be matched

• Waste of data for some, asset for others

• Often estimates ATT, but sometimes arguable (when some
treated cannot be matched)
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Matching in practice

• Try to match each treated patient with the control with the
closest PS, π(L)

• With or without replacement

• Within a range of PS values (caliper) or not

• Several algorithms for matching (e.g. optimal matching,
. . . )
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Analysis

• Same type of analysis as would have been performed on
the whole sample

• Preferably accounting for within-pairs correlation for
variance estimation

• Weighted analyses if matching with replacement or if full
matching
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Example: Bilateral vs single-LT for IPF

• Patients with idiopathic pulmonary fibrosis

• Intervention = BLT vs SLT

• Outcome = survival

• UNOS registry, 3327 patients

• 1:1 matching without replacement within a 0.25 SD caliper
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Baseline data
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Matched data
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Outcome analysis

• Cox PH model with time-dependent effect and robust
variance (matched structure)
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Time-dependent treatment effect
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IPTW

• Inverse probability of treatment weighting

• Weights inversely proportional to probability of receiving
the treatment actually recieved

• Tries to reconstruct a population with similar structure in
both groups
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Inverse probability of treatment weighting (IPTW)

• Linked to Horvitz-Thompson weighting in survey sampling

• Treated patients are weighted by 1/ê(Li)

• Control patients are weighted by 1/[1− ê(Li)]

• Overweights patients who had low probability of receiving
the treatment they actually received
− Compensates the larger no. of patients of the other group

with similar π(L)

• Estimates ATE (weighting up to full population)
• But weigths for ATT can also be used
− Weight for treated is 1
− Weight for controls is ê(Li)/[1− ê(Li)] (the odds)

Raphaël Porcher (UPD)

Adjustment for confounding 32/36



Introduction Limits of classical methods Propensity scores References

Some choices in practice

• Extreme weights may yield unstable results

• Some solutions are

− Stabilized weights: multiply the weights by the marginal
probability of the treatment actually received

− Truncation (or trimming): fix a maximum value for weights

• Truncation produces bias but variance will be lower

• Still important to check balance (weighted analysis)
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Outcome analysis

• Use weighted analysis (weighted t-test, weighted
regression, . . . )

• Use ’robust’ variance estimator

• Or use bootstrap
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Conclusion on propensity scores

• Different methods, different effect measures

• Makes sense to use several methods as sensitivity
analyses

• Estimate marginal effects

• Rely on unconfoundedness: cannot balance on
unobserved counfounders→ remaining bias
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