

Effect measures

Stijn Vansteelandt

Ghent University, Belgium London School of Hygiene and Tropical Medicine, U.K.

Background

- So far, we have been speaking rather loosely about causal effect and direct effect.
- Once we wish to report effect sizes, we need to be more precise.
- The use of counterfactuals forces one to be clear and precise.

Counterfactuals

- Suppose that we are interested in the causal effect of smoking A during pregnancy on stillbirth Y.
- Suppose for Emma, we could observe her baby's mortality status Y(1) if she were to smoke during pregnancy.
- Suppose that we could also observe her baby's mortality status Y(0) if she never smoked during pregnancy, all other things being the same.
- Y(0) and Y(1) are referred to as counterfactual or potential outcomes.

Causal effects

- If Y(1) = 1 and Y(0) = 0, then Emma's smoking would cause her baby to die.
- Her individual causal effect of smoking on her baby's mortality is

$$Y(1)-Y(0)$$

It is unobservable.

The population causal effect (Hernán, 2004) is

$$E \{Y(1) - Y(0)\}.$$

It can be identified under certain assumptions (e.g. randomization).

Causal effect versus association

Mother	Α	Y	Y(0)	Y(1)
Emma	1	1	1	1
Anna	1	1	1	1
Mary	1	0	0	0
Stephanie	0	0	0	0
Andrea	0	0	0	0
Kathy	0	1	1	1

$$E\{Y(1)\} - E\{Y(0)\} = E\{Y(1) - Y(0)\} = 0$$

versus

$$E(Y|A = 1) - E(Y|A = 0) = 1/3$$

Multiple versions of treatment

Nutrition Research Reviews (2009), 22, 93–108 © The Authors 2009 doi:10.1017/S0954422409990035

A review and meta-analysis of the effect of weight loss on all-cause mortality risk

Mary Harrington¹, Sigrid Gibson² and Richard C. Cottrell³*

¹The Sugar Bureau, London WC2B 5JJ, UK ²Sig-Nurture Ltd, Guildford, Surrey GU1 2TF, UK ³World Sugar Research Organisation, London SWIV 3LX, UK

What is meant by the effect of weight loss on mortality?

Linear regression

• If L is sufficient to adjust for confounding and

$$E(Y|A,L) = \beta_0 + \beta_1 A + \beta_2 L$$

then β_1 can be interpreted as a conditional causal effect or subgroup effect

$$E\{Y(1)-Y(0)|L\}=\beta_1$$

 Because all subgroups have the same effect, it can also be interpreted as a marginal causal effect or population-averaged effect

 $E\{Y(1) - Y(0)\}$

Logistic regression

• If L is sufficient to adjust for confounding and

$$logit E(Y|A, L) = \beta_0 + \beta_1 A + \beta_2 L$$

then $\exp(\beta_1)$ can be interpreted as a conditional causal effect or subgroup effect

$$\frac{\operatorname{odds} \left\{ Y(1) = 1 | L \right\}}{\operatorname{odds} \left\{ Y(0) = 1 | L \right\}}$$

 Due to noncollapsibility of the odds ratio, it generally differs from the marginal causal effect

$$\frac{\operatorname{odds} \{Y(1) = 1\}}{\operatorname{odds} \{Y(0) = 1\}} \neq \exp(\beta_1)!$$

Simulation experiment

```
n <- 1e6
a <- rbinom(n,1,0.5)
l <- rnorm(n)
y <- rbinom(n, 1, expit(a + 1))</pre>
```

Is there confounding of the effect of A on Y? Draw a causal diagram corresponding to this data-generating mechanism.

Conditional causal effect

$$\frac{\text{odds}\left\{Y(1) = 1|L\right\}}{\text{odds}\left\{Y(0) = 1|L\right\}} = \frac{\text{odds}\left(Y = 1|A = 1, L\right)}{\text{odds}\left(Y = 1|A = 0, L\right)} = \exp(1) = 2.72$$

Marginal causal effect

$$\frac{\text{odds} \{Y(1) = 1\}}{\text{odds} \{Y(0) = 1\}} = \frac{\text{odds} (Y = 1|A = 1)}{\text{odds} (Y = 1|A = 0)} = \exp(0.84) = 2.31$$

Conditional or subgroup effects

Marginal or population-averaged effect is diluted

Case study: Westphalian Stroke Registry

- Includes all patients treated in Northwestern Germany for stroke symptoms, admitted to 42 participating hospitals. (Kurth et al., AJE 06)
- 8208 ischemic stroke patients, between 2000 and 2001.
- Goal: Effect of tissue plasminogen activator on death.

Case study: Westphalian Stroke Registry

Method	No.	OR	95% CI
No adjustment	6269	3.35	2.28 - 4.91
Ordinary regression	6269	1.93	1.22 - 3.06
Matching	406	1.17	0.68 - 2.00
IPTW	6269	10.77	2.47 - 47.04

What explains the differences?

Different methods infer different effect measures

Ordinary regression infers

$$\frac{\operatorname{odds} \{Y(1) = 1 | L\}}{\operatorname{odds} \{Y(0) = 1 | L\}}$$

Matching infers

$$\frac{\operatorname{odds} \{Y(1) = 1 | A = 1\}}{\operatorname{odds} \{Y(0) = 1 | A = 1\}}$$

IPTW infers

$$\frac{\text{odds}\left\{Y(1)=1\right\}}{\text{odds}\left\{Y(0)=1\right\}}$$

These effects are of a different magnitude

	Treated $(n = 212)$		Not Treated $(n = 6057)$				
Percent.	PS	No.	%	PS	No.	%	OR
99-100	0.58	36	8.3	0.55	26	26.9	0.25
95-99	0.31	73	17.8	0.29	178	15.2	1.21
90-95	0.14	55	14.6	0.14	258	7.4	2.14
75-90	0.059	31	9.7	0.046	910	9.0	1.08
50-75	0.012	10	40	0.0084	1558	5.6	11.3
25-50	0.0017	5	40	0.0014	1561	3.5	18.6
10-25	0.0004	2	50	0.00027	940	3.8	25.1
5-10	0	0	0	$6.6 \ 10^{-5}$	313	1.9	
1-5	0	0	0	2.7 10 ⁻⁵	251	3.2	
0-1	0	0	0	7 10 ⁻⁶	62	1.6	
Overall	0.25	212	16.0	0.0262	6057	5.4	3.35

Summary

Take home message: intervention effects can be defined in many ways

- Standard regression procedures infer conditional effects.
- But interest lies often in marginal effects, or effects in the (un)treated.
- Counterfactuals force us to be explicit about the meaning of an intervention's effect.

Summary

Take home message: adding variables to a regression model can change the magnitude of the effects, even when the exposure is randomly assigned

- e.g. due to effect modification or non-collapsibility.
- Standard model building procedures based on evaluating changes-in-coefficients are thus fallible.
- Effect sizes can be difficult to compare between studies!

(watch out for meta-analyses)

References

Greenland S, Robins JM and Pearl J. Confounding and collapsibility in causal inference. Statistical Science 1999; 14, 29-46.

Hernan MA. A definition of causal effect for epidemiological research. *Journal of Epidemiology and Community Health* 2004; **58**, 265-271.

Vansteelandt S and Keiding N. Invited Commentary: G-Computation - Lost in Translation? *Am J Epidem* 2011;**173**:739-742.

iROR Methods in Research on Research

A presentation delivered at the

first MiRoR training event October 19-21, 2016 Ghent, Belgium

This project has received funding from the EU Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement #676207

