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Often many explanations behind associations

‘it would take about 0.4 kg of chocolate per capita per year to increase
the number of Nobel laureates in a given country by 1.’

What might explain this?
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Causal diagrams

To gain insight into the origin of associations,
causal diagrams are becoming increasingly popular.

motivating example: search for biomarkers

• Pressure for accelerated evaluation of new AIDS therapies
have led to CD4 and viral load as endpoints
replacing time to clinical events.

• This raises the question whether an effect on the biomarker
provides evidence for a clinical effect.
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Example: search for surrogate markers

Randomized treatment X

CD4 count M

Survival Y

scientific question

• Is effect of treatment on clinical endpoint entirely mediated
by its effect on the biomarker?

• Is there a direct effect of treatment on the clinical endpoint,
not through the biomarker?
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Causal diagrams

• To gain insight, we use causal graphs, causal diagrams, causal
Directed Acyclic Graphs (DAG) or causal Bayesian networks.
(Pearl, 2000)

Randomized treatment X

CD4 count M

Survival Y

U

• Informally, these are graphical representations
of the (causal) data-generating mechanism,
for which we shall adopt the structure of a DAG.

Directed Acyclic Graph (DAG) or Bayesian network

a system of directed edges between variables, without cycles.
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Example

This diagram expresses that the data may have been obtained
by a data-generating mechanism such as:

• First, generate Z1 and Z2 independently.
• Next, generate W in function of Z1 and Z2.

e.g. W is binary (0/1) with success probability expit(2Z1 − Z2).

• Next, generate X in function of Z1.
e.g. X is binary (0/1) with success probability expit(−1 + 0.5Z1).

• Finally, generate Y in function of Z2.
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Causal DAGs

We make the DAG causal
by letting each edge express the possibility of a direct causal effect.

Exclusion restriction
When there is no arrow from X directly into Y , manipulating X
will not change Y once all parents of Y are manipulated.

For this interpretation to be justified,
one must adhere to the following principle.

no omitted confounders assumption
A causal DAG includes all common causes of any two variables.
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Example: search for surrogate endpoints

Randomized treatment X

CD4 count M

Survival Y

• By randomization,
no variables (measured or unmeasured) pointing to X .

• No omitted confounders, affecting X , must be added.
• This thus formally expresses the assumption
that X is randomised!
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Example: search for surrogate endpoints

Randomized treatment X

CD4 count M

Survival Y

U

• There may be (unmeasured) health characteristics U
jointly affecting CD4 count M and survival Y .

• Even if unmeasured, U must be added.
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An alternative way to visualise common causes

We represent association between M and Y by means of an
unmeasured common cause;
some authors use double-headed arrows.

Randomized treatment X

CD4 count M

Survival Y
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How to keep a causal DAG ‘manageable’ in practice?

• A causal DAG need not include variables that are not of
interest and not common causes of 2 variables in the DAG.

Treatment X Survival Y Z

• A causal DAG need not include variables that lie
on the causal path between an exposure and an outcome
when there is no specific interest in them.

Treatment X Survival YZ

• Each node can represent a collection of (e.g. 50) variables.

Treatment X Survival Y

Z

• This has the advantage that no assumptions must be made
about the causal relations between those components.
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Causal diagrams versus path analysis

• In summary, a causal diagram forms a graphical,
nonparametric representation, based on expert knowledge,
of how the data were generated.

• It embodies causal assumptions, such as about:
• the direction of causality;
• the possible absence of causal effects

between some measurements;
• the possible absence of confounders;
• the study design (e.g. ascertainment, missing data, ...)

but no modelling assumptions.
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How to use causal diagrams?

• On the causal diagram,
we can assess how X may causally affect Y .

• A variable X in a causal diagram can only causally affect
a variable Y when there is a directed path from X to Y .

Randomized treatment X

CD4 count M

Survival Y

U

• For instance, X may have a direct causal effect on Y ,
as well as an indirect causal effect which is mediated by M.

• X does not causally affect Y along the path X −M − U − Y !
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How to assess association in causal DAGs?

• On the causal diagram,
we can assess how X may be associated with Y .

• The association between 2 variables is driven by
possible associations along all directed and undirected paths
that connect these variables.

Randomized treatment X

CD4 count M

Survival Y

U

• To understand which paths explain the association,
we use d-separation:
a graphical rule to read off independencies implied by a DAG.
(Pearl, 1995, 2000).
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d-separation

• To understand what causes Y and X to be associated, we
think of a DAG as an electric net.

• colliders C are inactive

X → C ← Y

• non-colliders C are active

X → C → Y or X ← C → Y

• If there is no electric current between X and Y ,
then they are independent.

• There may be association along all active paths.
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Example: search for surrogate endpoints

Randomized treatment X

CD4 count M

Survival Y

U

The association between X and Y is due to
• the direct causal effect,
• the indirect causal effect through M,
• but not due to a possible spurious association
along the path X −M − U − Y .

We thus find that for the total effect, association = causation.
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Adjusting or conditioning changes dependencies

• Suppose now that we ‘adjust the analysis for C ’, either by
restricting the analysis to subjects with the same value of C ,
or by including C in a regression model

E (Y |X ,C) = α+ βX + γC

• If there is no electric current between X and Y after adjusting
for C , then X and Y are independent, conditional on C .

• There may be conditional association along all active paths.
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d-separation after conditioning

• Adjusting for a non-collider C changes
active → inactive

• Adjusting for colliders or their descendants C changes
inactive → active

The latter goes against intuition and is a source of much error.
It explains why e.g.

• short basketball players tend to be faster than tall ones;
• college students with poor math abilities tend to be good at
sports;

• hospital patients without diabetes are more likely to have
cholecystitis;

• ...
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Example: search for surrogate endpoints

Randomized treatment X

CD4 count M

Survival Y

U

Conditional association between X and Y , given M is due to
• the direct causal effect,
• spurious association along the path X −M − U − Y ,
• but not due to the indirect causal effect through M.

We thus find that for the direct effect, association 6= causation.
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Why does conditioning on a collider induce bias?

Randomized treatment X

CD4 count M

Survival Y

U

• Suppose that both treatment X and a low baseline level U of
immunosuppression independently increase CD4 count.

• Then these attributes will be correlated
among patients with high CD4 count.

• Indeed, untreated patients with high CD4 count
likely have a low baseline level of immunosuppression,
which explains their high CD4 count.
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Example: search for surrogate endpoints

Randomized treatment X

CD4 count M

Survival Y

U

• Some criteria for validation of surrogate endpoints are based
on testing whether β = 0 in model

E (Y |X ,M) = α+ βX + γM

• These approaches are invalid
in the presence of unmeasured confounders U.
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Does it really matter?

• Birth weight is strong predictor of infant mortality.
• Investigators have therefore frequently stratified on birth
weight when evaluating the effect of maternal smoking on
infant mortality.
(Yerushalmy, 1971; Wilcox, 1993)
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Kaiser Foundation Health Plan, SF, 1960-67

(non-smokers: solid; smokers: dashed)
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Does it really matter?

• Survey of 1991 U.S. births reveals that infant mortality rate
ratio for exposed infants versus nonexposed infants is 0.79
(95% CI: 0.76, 0.82) among LBW infants.

• Birth weight paradox has been a controversy for decades.
• One suggestion is that the effect of maternal smoking is
modified by birth weight
in such a way that smoking is beneficial for LBW babies.
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Does it really matter?

Smoking X

Birth weight M

Survival Y

U

• Although birth weight is a strong predictor of infant mortality
and adjustment is therefore common,
it is inappropriate for answering this research question.

• The unadjusted rate ratio 1.55 (95% CI: 1.50, 1.59)
expresses the causal effect (provided no further confounders).
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Summing up

• The reason why standard approaches may fail,
is because they try to uncover causation
from statistical associations, but association 6= causation.

• For instance, the decision to adjust for birth weight is based on
birth weight having a strong association with infant mortality,
but this has nothing to do with causal arguments.

• The only way to learn about the effect of some exposure on
some outcome, is to express background knowledge about
‘what may have a causal effect on what’.

• We can do this via causal diagrams.
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Summing up

• Using d-separation, we can infer for which confounders C
we need to adjust when estimating the effect of X on Y .

• Such adjustment may happen via standard regression

E (Y |X ,C) = α+ βX + γC
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Summing up

Randomized treatment X

CD4 count M

Survival Y

U

Take home message 1: Mediation analyses demand confounding
adjustment, even in randomized experiments

• They demand adjustment
for confounding of the mediator - outcome association.

• The fact that the exposure is randomly assigned,
does not prevent such confounding.
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Summing up

Take home message 2: Standard criteria for covariate selection
can be very misleading
They demand adjustment for strong correlates of the outcome,

regardless of whether the end result retains a meaningful
interpretation.
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